Saudi Journal of Gastroenterology
Home About us Instructions Submission Subscribe Advertise Contact Login    Print this page  Email this page Small font sizeDefault font sizeIncrease font size 
Users Online: 947 
Year : 2016  |  Volume : 22  |  Issue : 2  |  Page : 133-138

Surface gene variants of hepatitis B Virus in Saudi Patients

1 Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
2 Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Virology, Cairo University, Giza, Egypt
3 Department of Medicine, King Saud University Liver Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia

Correspondence Address:
Fahad N Almajhdi
Department of Botany and Microbiology, College of Science, King Saud University, PO Box 2455, Riyadh - 11451
Saudi Arabia
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/1319-3767.167186

Rights and Permissions

Background/Aims: Hepatitis B virus (HBV) continues to be one of the most important viral pathogens in humans. Surface (S) protein is the major HBV antigen that mediates virus attachment and entry and determines the virus subtype. Mutations in S gene, particularly in the “a” determinant, can influence virus detection by ELISA and may generate escape mutants. Since no records have documented the S gene mutations in HBV strains circulating in Saudi Arabia, the current study was designed to study sequence variation of S gene in strains circulating in Saudi Arabia and its correlation with clinical and risk factors. Patients and Methods: A total of 123 HBV-infected patients were recruited for this study. Clinical and biochemical parameters, serological markers, and viral load were determined in all patients. The entire S gene sequence of samples with viral load exceeding 2000 IU/mL was retrieved and exploited in sequence and phylogenetic analysis. Results: A total of 48 mutations (21 unique) were recorded in viral strains in Saudi Arabia, among which 24 (11 unique) changed their respective amino acids. Two amino acid changes were recorded in “a” determinant, including F130L and S135F with no evidence of the vaccine escape mutant G145R in any of the samples. No specific relationship was recognized between the mutation/amino acid change record of HBsAg in strains in Saudi Arabia and clinical or laboratory data. Phylogenetic analysis categorized HBV viral strains in Saudi Arabia as members of subgenotypes D1 and D3. Conclusion: The present report is the first that describes mutation analysis of HBsAg in strains in Saudi Arabia on both nucleotide and amino acid levels. Different substitutions, particularly in major hydrophilic region, may have a potential influence on disease diagnosis, vaccination strategy, and antiviral chemotherapy.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded312    
    Comments [Add]    
    Cited by others 1    

Recommend this journal